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Abstract. Local feedback stabilization of bifurcated solution branches is studied. Two
cases are considered: that in which the nominal system undergoes a Hopf bifurcation as
a parameter is varied, and the case of a stationary bifurcation from a simple zero'eigen-
value. For each case, results on the existence of a stabilizing feedback are given. More-

over, simple synthesis techniques for the stabilizing controllers are discussed. A concept
of '-proximity stabilization"s introduced as an alternative to stabilization in the ordi-
nary sense for systems that are not locally stabilizable. A result is stated on the generi-
city of proximity stabilizability. Motivation for further research in several areas is
given. }

1. Introduction

A standard preliminary step in the analysis and design of control systems is the
linearization of the model dynamics about a nominal reference trajectory. The analysis
and/or design are then performed for the resulting approximate linear model. The suc-
cess of this technique in many applications can be attributed to the result of Liapunov
that, if the linearized system is locally asymptotically stable, so too is the original non-
linear model. This is the celebrated "principle of linearized stability." This principle
holds for finite systems of ordinary differential equations, as well as for some infinite
dimensional problems. Situations in which the local stability properties of the nonlinear
model cannot be inferred from its linearization are referred to as critical cases in stabil-
ity theory 115] .
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Early results on stability in critical cases were obtained by Liapunov [25] , Malkin
126] , Pliss 133] and Krasovskii 123] . This topic has continued to be an active area of
investigation. Recently, the related question of stabilization in critical cases has
received significant attention. The papers [12, 8, 35, 4, 1, 2, 16, 7] represent a broad
spectrum of approaches to this problem.

Our aim in this lecture is to summarize some recent results of the author and J.-H.
Fu [1, 2] on the closely related problem of local bifurcation control, to present an exten-
sion to one case where the results of [1, 2] do Dot apply, and to indicate some directions
for further work in this area. By "local bifurcation control" we mean the local stabiliza-
tion of bifurcated solutions. Two types of bifurcation from an equilibrium point of a
one-parameter family of ordinary differential equations are considered. First, the stan-
dard Hopf bifurcation of a periodic solution; and second, stationary (or static) bifurca-
tion, involving only equilibrium points. The connection between local stabilization in
critical cases and local bifurcation control becomes transparent given some basic facts
about bifurcations of equilibria of differential equations. There are advantages to
analyzing these two problems simultaneously. Often results on stabilization in critical
cases can be directly applied also to problems in the control of bifurcations.
Correspondingly, local bifurcation control problems provide added motivation for the
study of stabilization in critical cases.

Our approach to the local feedback stabilization problem has the novel feature
that it facilitates the derivation of generally valid analytical criteria for stabilizability,
as well as specific stabilizing feedback controls. This is possible through use of bifurca-
tion formulae which involve only Taylor series expansion of the vector field and eigen-
vector computations. The bifurcation formulae used in [1] for the study of control of
Hopf bifurcations were obtained by Howard [19] by a harmonic balance approach using
the Fredholm Alternative. These formulae significantly simplify similar formulae
obtained by Hopf 118] . In our study of stationary bifurcations, we derive bifurcation
formulae following the Projection Method, as outlined in looss and Joseph [21] . This is
essentially the same technique used by Howard 19] in his study of Hopf bifurcations.

Previous work on the feedback control of bifurcations includes that of Mehra [28,
and Mehra, Kessel and Carroll [29] . See also the account in Casti 110] . These studies
tend to be concerned with the problem of globally removing bifurcations by state feed-
back. The general results apply only to stationary bifurcations, since they are obtained
by appealing to a global implicit function theorem. This is in contrast to the local

bifurcation control problems considered here, where one seeks only to modify the stabil-
ity properties of the bifurcated solutions.

The development of the paper is as follows. The problems of local feedback stabili- - For
zation and local bifurcation control are discussed in Section 2. In Section 3, the main i
results on control of Hopf bifurcations are recalled from [1] without proof. In Section 4 0
known results on stationary bifurcations are recalled, and bifurcation formulae are 'd 0
derived for this case. These results are applied to the stationary bifurcation control _
problem in Section 5, summarizing the main results of [2] . A notion of "proximity sta-
bilization" is introduced in Section 6, and shown to be useful in problems for which noI
stabilizing control law exists in the usual sense. Section 7 contains two worked
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examples, one illustrating the results and the other indicating an area for further inves-
tigation related to the proximity stabilization issue of Section 6.

2. Problem Setting

Consider a one-parameter family of nonlinear control systems.
Z =f (ZU)

where X E R" , u is a scalar control, p is a real-valued parameter, and the vector field
jf , is sufficiently smooth. Suppose that for u - 0 Eq. (1) has an equilibrium point zo(p)
which depends smoothly on p. In the sequel the system

X--f ,u ), (2)

which is simply (1) with p = 0, will also be of interest.

This paper is concerned with the synthesis of feedback controls u = u (z) achiev-
ing certain stability properties for each of the descriptions (1) and (2).

The linearization of Eq. (2) at z = 0, u = 0 is given by
6

=Az + bu (3)

where A :=.--(O,O) and b :- 8(0,0). If the pair (A ,b) is controllable,1 then a

standard linear systems result j221 asserts the existence of a linear feedback u = -k "

such that the resulting system r = (A - bk )z is asymptotically stable. Applying this
feedback in the original nonlinear system (2) renders the origin locally asymptotically
stable. Moreover, the same conclusion applies if the uncontrollable modes of (3) are
asymptotically stable. In contrast, if (A ,b ) has an unstable uncontrollable mode, then
the origin of (2) remains unstable regardless of the applied feedback. These considera-
tions imply that the only essentially nonlinear situation encountered in local feedback
stabilization occurs when some uncontrollable modes of (3) are pure imaginary, and any
other uncontrollable modes are asymptotically stable. However, even if there are modes
which are pure imaginary and controllable, it may be important to study the existence
of nonlinear stabilizing feedback control laws [34, 31, 32] .

It is natural to question the utility of results giving nonlinear stabilizing feedback
controls when a linear stabilizing control law exists. There are indeed several reasons
for using nonlinear feedbacks, two of which are noted next. First, the effect of a linear
feedback control designed to stabilize the linearized version of the critical system (2) on
the one-parameter family of systems (1) may be difficult to determine. Indeed, at least
for small feedback gains, one can expect that the bifurcation will reappear at a different
value of the parameter p. The stability of this new bifurcation is not easily determined.
Hence, simply using a linear stabilizing feedback may be unacceptable if the goal is to
stabilize a bifurcation and not merely to stabilize an equilibrium point for a fixed

'This means that the state # of Eq (3) can be "steered" from any initial condition &a to say precribed terminal
condition *I within a prespeciled time, by appropriate choice of the control a (t). Similarly, one speak;, of controllability
of modes of Eq (3) (eigenvalufs of A), depending on whether or not these modes are affected by state feedback.

I:



parameter value. Second, it should not be surprising that in some situations a linear
feedback which locally stabilizes an equilibrium may result in globally unbounded
behavior, whereas nonlinear feedbacks exist which stabilize the equilibrium both locally
and globally. For an example, see Moon and Rand [32] . Hence, even if stabilization,
rather than bifurcation control, is the issue being studied, nonlinear feedback controls
can be superior.

In the light of the foregoing discussion, it is appropriate to assume that the matrix
A of Eq. (3) possesses at least one eigenvalue with zero real part. The type of results
obtained will depend heavily on the number of eigenvalues of A which are assumed
pure imaginary, their multiplicity, and whether they are zero or have nonzero imaginary
parts. The results of this paper address situations in which either of the following two
hypotheses is satisfied. The first implies that Eq. (1) undergoes a Hopf bifurcation to
periodic solutions at p = 0 when u = 0, while the second ensures that new stationary
solutions of (1) bifurcate from zo(p) at p 0 when u = 0.

(H) Eq. (1) has an equilibrium :0(p) when u = 0. Furthermore, the linearization of
(I) near z0, p = 0 possesses a pair of simple, complex conjugate eigenvalues XI(P),
X2( ) = T-), with X1(0) = i w, w, > 0, Re X; (0) 79 0, with the remaining eigen-
values X3(O) .... , X, (0) in the open left half complex plane.

(S) Eq. (1) has an equilibrium zo(p) when u = 0. Furthermore, the linearization of
(1) near z0, p = 0 possesses a simple eigenvalue X(p) with XI(O) = 0, X; (0) 74 0,
with the remaining eigenvalues X(0), . . . , X. (0) in the open left half complex plane.

The assumption that X; (0) 31 0 is the familiar strict-crossing (transversality) condition
introduced by Hopf [18]

Two stabilization problems are considered in the sequel. Both are studied
separately for hypotheses (H) and (S). In each case, one of these problems pertains to
Eq. (1) and the other to Eq. (2). For Eq. (1), the goal is to ensure local asymptotic sta-
bility of the bifurcated solutions. This will be referred to as the local Hopf bifurcation
control problem or the local stationary bifurcation control problem, depending on which
hypothesis is in force. For the description (2), it is desired to solve the standard local
feedback stabilization problem at the equilibrium point z0(0). Note that under either
hypothesis (H) or (S), Eq. (2) with u m 0 is an example of a critical nonlinear system
since its linearization possesses an eigenvalue with zero real part.

3. Control of Hopf bifurcations

Under hypothesis (H), the Hopf Bifurcation Theorem asserts the existence of a
one-parameter family { p, , 0 < t < to ) of nonconstant periodic solutions of Eq (1)
emerging from x = 0 at p = 0. (This assumes u w 0, of course.) Here t is a measure
of the amplitude of the periodic solutions and to is sufficiently small. The periodic solu-
tions p,(t ) have period near 2wrw 1 and occur for parameter values p given by a smooth
function p(c). Exactly one of the characteristic exponents of p, is near 0, and it is given
by a real, smooth and even function



+ 64f4 + (4)

Moreover, p,(t) is orbitally asymptotically stable with asymptotic phase if 6(f) < 0 but

is unstable if 6(e) > 0. Denote by 62K the first nonvanishing coefficient in the expan-
sion (4). Checking the sign of 02K is sufficient for determining stability. Generically,
K = I so that locally the stability of the bifurcated periodic solutions p, is typically

decided by the sign of the coefficient 02.

An algorithm for the computation of 02 can be useful in the solution of local feed-
back stabilization problems under hypothesis (H). In [4] the evaluation of (a scaled ver-
sion of) 62 is performed using a formula which applies to two-dimensional systems. The
original n-dimensional system is reduced to a two-dimensional system by appealing to
the Center Manifold Theorem. Use is then made of the fact [9, 14, 27, 11] that the sta-
bility properties of an equilibrium on the center manifold coincide with its stability in
R". In fact, the value of f(c) is known [27, 17, 3] to be the same for the original and
the reduced systems. The approach taken in this work (cf. Abed and Fu [1] ) differs
from that of [41 mainly in the choice of algorithm for computing 02. The implications
for the type of results one obtains are nontrivial.

Now suppose 02 7 O. Besides locally determining the stability of the bifurcated

periodic solutions p,(t ), it is known that the sign of the coefficient 02 also determines
the stability of the equilibrium zo(p) at criticality (i.e. at P = 0). This fact implies that
if a feedback control u = u (z) can be found such that 02 < 0 for the Hopf bifurcation

occurring in the controlled system

2 f f ,( '(z)) (5)

then the local feedback stabilization problem described in Section 2 is solved. Simply
use the feedback u = u(z) in Eq. (1). Indeed, such a feedback solves both the local
smooth feedback stabilization problem for Eq. (1) and the local Hopf bifurcation stabili-
zation problem for any parametrized version of (1) of the form (5). This establishes the
connection between local feedback stabilization and Hopf bifurcation control.

Rewrite Eq. (1) in the series form

= =Lox + u-y + uL: + Q 0(z,:)

+ C 0(:,Zx) + (6)

where the terms not written explicitly are of higher order in z, u and p than those
which are. Thus L 0 and L I are square matrices, -y is a constant vector, Qo(z ,z) is a
quadratic form generated by a symmetric bilinear form Qo( ,y ) giving the second order
(in x) terms at u == 0, p = 0, and C¢(:,z,x) is a cubic form generated by a sym-
metric trilinear form CO(z,y,z ) giving the third order (in z) terms at u = 0, P = 0.
(Note that L 0 is simply A of Eq. (3), and -y corresponds to b.)

Denote by r the right (column) and by I the left (row) eigenvector of L 0 with
eigenvalue iw,. Normalize by setting the first component of r to I and then choose I
so thatlr -1.

p..



It is well known that only the quadratic and cubic terms occurring in a nonlinear
system undergoing a Hopf bifurcation influence the value of 62. Thus only the linear,
quadratic and cubic terms in an applied feedback u (z) have potential for influencing

82. To simplify the analysis and to emphasize the influence of nonlinear terms in the
feedback control, we require u (z) to be of the form

u(Z) = XTQ -T + C.(X,:,z (7)

where Q. is a real symmetric n Xn matrix, and C. is a cubic form generated by a
scalar valued symmetric trilinear form.

Theorems 1 and 2 below give sufficient conditions for local stabilizability of a Hopf
bifurcation by feedback of the form (7). Both are positive results. Theorem I applies
under the hypothesis that i- 34 0, while in Theorem 2 one 1- = 0 is assumed. By the
well known Popov-Belevitch-Hautus (PBH) eigenvector test for controllability 122] of
modes of linear time-invariant systems, the former case corresponds to the critical
modes being controllable for the linearized system (3), while in the latter case these
modes are uncontrollable. The theorems were proved in [1J using the formula for #2

derived by Howard [191 . Reference [1] also contains specific formulae for stabilizing
feedback controls.

Theorem 1. Let hypothesis (H) hold and assume that l I 0. That is, the critical
eigenvalues are controllable for the linearized system. Then there is a smooth feedback
u (z) with u (0) -= 0 which solves the local Hopf bifurcation control problem for Eq. (1)
and the local feedback stabilization problem for Eq. (2). Moreover, this can be accom-
plished with only third order terms in u (z), leaving the critical eigenvalues unaffected.

Theorem 2. Suppose that hypothesis (H) is satisfied and that 1'Y = 0. Then there is a
smooth feedback u (z) with u (0) = 0 which solves the local Hopf bifurcation control
problem for Eq. (1) and the local feedback stabilization problem for Eq. (2) provided that

0 Re{ -21Qodr, IL 0")

+ IQo(r, 1 (2w I -
'2

+ -l[2L r + LIT] ]. (8)
4

4. Stationary bifurcations: Analysis

Under the stationary bifurcation hypothesis (S), it is well known 119] that Eq. (1)
exhibits a stationary (or static) bifurcation from Zo at p* = 0. That is, new stationary
solutions (i.e. equilibrium points) bifurcate from z0 at p = 0. The stability characteris-
tics of the new solutions are intimately related to those of xo(p) at criticality, i.e. at
ga = 0. It is this intrinsic relationship that allows the joint consideration of local stabili-
zation for Eq. (2) and bifurcation control for Eq. (1).

To establish this relationship and motivate the derivations to follow, consider a
general one-parameter family of nonlinear ordinary differential equations

fd



; = F(= )(9)

having an equilibrium point z(dp) at which hypothesis (S) holds. Then near
(O), #= 0 in (z, p) space there exists a locally unique curve of points (z(O), P(e)),

distinct from the p axis and passing through (0,0), such that for all sufficiently small
It L z (c) is an equilibrium point of (9) when p =p(c). Moreover, the parameter c may

be chosen so that z(c) and p(c) are smooth.

Denote the series expansions of p(e), z (c) by

() = PIC + P2C2 + , (10)

X (W = XIt + + ()

respectively. Generically, p, y 0, and there is a second equilibrium point besides z 0(ju)
for all small I pf. However, if Pl = 0 and P2 > 0 (resp. P2 < 0), then there are two new
equilibrium points, one for positive and negative values of c. These occur only for
sufficiently small positive (resp. negative) values of p. The new equilibrium points also
have an eigenvalue # which vanishes at p = 0, with a series expansion

= + #2  + (12)

Moreover, the exchange of stability formula 119, 181

61= -pX'(0) (13)

holds. If p, = 0 and P2 7 0, the appropriate exchange of stability formula is [181

02 = - 202)\ (0). (14)

(Note: Eqs. (13) and (14) may be derived using the Factorization Theorem in looss and
Joseph 115, pp. 90-91].) Suppose X; (0) > 0. Then these facts imply that supercritical
solution branches are stable while subcritical branches are unstable.

The following result follows from an application of the Center Manifold Theorem
to a suspended version of Eq. (9) at zo(O), p = 0.

Theorem 3. Let hypothesis (S ) hold. If p, 34 0, then the equilibrium point zo(O) is
unstable for Eq. (9). If p, = 0 and P2 7 0, then zo(O) is asymptotically stable if ' 2 < 0
but is unstable if /2 > 0.

Thus, the equilibrium point zO(O) will be assured asymptotically stable if one can
arrange that 1 - 0 and 02 < 0. If explicit formulae can be derived for 61 and 02, this
provides a starting point for the construction of locally stabilizing feedback controls for
the critical system (2). In fact, by the exchange of stability formulae, it is clear that
this also ensures the stability of the bifurcated stationary solution, by ensuring that the
bifurcation is a supercritical pitchfork bifurcation. This is a desirable outcome, as com-
pared to the transcritical bifurcation which would occur if 61 3 0, in which the bifur-
cated equilibrium point is stable on one side of p = 0 and unstable on the other.
Indeed, under hypothesis (S), a supercritical pitchfork bifurcation ensures that, even
though the nominal equilibrium solution :0(p) loses stability as p varies through 0, the
new equilibrium solution attracts a neighborhood of initial conditions about xO(0). This
can also be shown through an application of the Center Manifold Theorem and the

~p ~ - - %*% %** :~ % 2\ *-~:- >U~*~ .:-



theory of normal forms (sr- 114] for details).

Next, bifurcation formulae for Eq. (9) are derived. The results will be the main tool
in the construction of stabilizing feedbacks for Eqs. (1) and (2) in Section 5. The Pro-
jection Method, as elaborated in 121] , will be employed in the derivation.

By assumption, the Jacobian matrix DFo(zo(O)) of (9) at criticality possesses a
simple zero eigenvalue XI(O). Denote by r (resp. 1) the right column (resp. left row)

eigenvector of the critical Jacobian matrix corresponding to this eigenvalue. Using the
fact that 0 is a simple eigenvalue, it is not difficult to see that the vectors I and r may
be chosen to have only real elements. To be more specific, set the first component of r
to I and then choose I so that Ir =1.

Without loss or generality, assume that for small I p I the known equilibrium point

zo(p) of (9) is the origin, i.e. :0(p) = 0 for small I p I. This can always be achieved by a
smooth change of variables z -- x + zo(p). Rewrite (9) in the series form

x =L(,)x + Qu(x,x) + C,,(x,x,x) +-'

=Loz + pL z + pL 2  27 +

+Qo(xz) + pQ1(x,') +

+ Co(z,Z,z ) + - • • (15)

Here, L (p), L 1 , L 2 are n Xn matrices, QM(2 ,z), Qo(z ,z), Ql(z ,z) are vector valued
quadratic forms generated by symmetric bilinear forms Q(z , ,y), Qo(zy), Q (z ,y),

respectively, and Co( ,z ,x ) is a vector valued cubic form generated by a symmetric tri-

linear form C(z ,y,z). The terms not explicitly written in (15) are of higher order in x
and p than those which are.

A convenient outcome of this representation is the formula

x; (0) = IL I. (16)

See [19] or 121] for a proof.

If x is any real (unknown) solution of F,(x) = 0, define the parameter c by

:= Ix, (17)

and attempt a series expansion of the form

Substituting the expansion (18) in the equation obtained by equating the right side of

(15) to 0, and equating coefficients of like powers of c yields the following relationships.

0-- Lo:, (19)

0 = L Ox2 + pL IxI + Qo(:1, :t), (20)

,j
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O=LoX3 + p1LI-T2 + P2L]xj + ML 2Z1

+ 2Qo(x1 , T2) + I1Q(2'1,zT) + Co(z1 ,z1 ,Xj). (21)

By Eqs. (17) and (18),
=Ix (C)

=(Iz 1 + 2IX2 + CSz 3 + (22)

Hence,

Izl= 1, and lzk =O for k > 2. (23)

Eqs. (19) and (23), and the assumption that 0 is a simple eigenvalue of L 0 , now imply

= r. (24)

Substituting this in Eq. (20) gives the following equation, which should evidently be
solved for both z 2 and a,:

L0z 2 = - ILTr - Q0(r,r). (25)

Recall that L 0 is singular. From elementary linear algebra (or the Fredholm Alterna-
*tive), this equation has a solution 2 2 if and only if the right side of (25) is orthogonal to

all left eigenvectors of L 0 corresponding to the zero eigenvalue. Since zero is a simple
eigenvalue of L0 , one need only require that

IlL Ir + IQo(r ,r) = O, (26)
so that p, is determined as

Mi = 1 IQo r ,r) (27)

where Eq. (16) has been employed.

Since the Fredholm Alternative conditions are now satisfied, Eqs. (20) and (23) for
z 2 have a solution. This solution is easily verified to be unique. Equations (20), (23) are
conveniently expressed as the single equation(L0  2 - pIL r - Q0(r,r) (28)

Since (28) has a unique solution, the coefficient matrix

: (29)

is full rank. Hence, R TR is a nonsingular square matrix and X2 is given by

:2 = (RTR)IRT -MiLjr - Q(r,r) (30)
Z2 = R 0 "

With z2 now available, one applies the Fredholm Alternative to Eq (21) to solve

%. .,
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for the coefficient P2. Multiplying both sides of (21) by I and solving for P2, one obtains

P2= u '(0) Ir P 2 1 p, 2r + 21Q 0(r ,Z2)

+ pj1 Q(r,r) + IC(r,r,r) . (31)

Using the exchange of stability formula (13) and Eq. (27) for pl, the coefficient 61
is found to be

01 = JQo(r,r). (32)
If p, = 0 (implying also 61--- 0), then the exchange of stability formula (14) is valid. In
that case, one finds that f 2 is given by

2= 21 ( 2Qo(r ,z 2) + Co(r ,r ,r) ), (if p= 0 only). (33)

The formulae (27), (30)-(33) will be employed in the next section to obtain
sufficient conditions for bifurcation controllability and local stabilizability for Eqs. (1)
a,,d (2), respectively.

5. Stationary bifurcations: Control

Motivated by the bifurcation formulae derived above, and by the results of Section
3, one expands the vector field of Eq. (1) as

; (/ ,( u , )

=Lox + P Lix + uL Ix + u - + Qo(x,z)

+ p2 L2Z + PQ 1(Z,z) + UQ,(z,z)

+ CO(z,xx) + " (34)
The notation here is similar to that in Eq. (15). As in Section 3, a feedback control con-

sisting of quadratic and cubic terms is assumed. That is, u = u (z) is taken as

u(z) = +TQz 4- C.(xz,xz), (35)

where Q. is a real symmetric n )n matrix and C.(zz,z) is a cubic form generated
by a scalar valued symmetric trilinear form. Note that, as in Section 3, u (z) contains
no terms linear in x. This ensures that the left and right eigenvectors corresponding to
the zero eigenvalue, and the value of p at criticality, will be unaffected by the feedback
control. The closed loop dynamics with a feedback of the form (35) become (starred
quantities below denote values after feedback)

x -=Lot + Q;(z,)+ Co(z,x,)

+ tL, + P'L;Z + PJ,'(z,z) + (36)
where the matrices L, i -- 0,1,2, the quadratic forms Q (, ), Q (z,z) and the!

cubic form C;(Z ,Z ,) are

2 %



A

L = L, i 0,1,2, (37a)

QV(z,z)-(zTQ.z)y1 + Qo(z,z) (37b)

Q; (z ,X) = Q (z ,.") (37c)

,an d

Co (Z,,)-- C. (.z,z,x )- + Co(Xz,.) + (ZT Q. Z)L Jr. (37d)

Symmetric bilinear and trilinear forms Q,;(z,y), C0(z ,y ,z) generating the qua-
dratic and cubic forms Q0*(z,z) and Co(z ,z,z), respectively, are now chosen:

Qo(zY, + Qo(X,Y). (3s)

Co ( ,Y,Z) = C. (. ,,)y + Co(. ,Y,Z)"-
{(y * .z )L 1z + (zTQ.y)L z + (zTQ. )Ly }. (39)

After feedback, the coefficient #1 becomes, using Eq. (32),

SQ(r,r)

= I { Qo(r,,) + (,TQ.r )

=6 + (r T Q. r ), (40)

where 61 denotes the value of 61 with no feedback, i.e. with u (z) 0. From (40) it is

clear that a sufficient condition for the existence of a feedback u (z) driving 01 to 0 is
tY 76 0. (41)

Indeed, if (41) holds, then any feedback control of the form (35) with

r -- - (42)

results in 6j = 0.

Recall from the Popov-Belevitch-Hautus (PBH) eigenvector test for controllability

of modes of linear time-invariant systems 1221 that 1- 30 0 is equivalent to controllabil-
ity of the zero eigenvalue of the linearized system corresponding to Eq. (2) near the ori-
gin. Thus, controllability of the critical zero eigenvalue for the linearized system is
sufficient for the existence of a feedback ensuring # = 0. Indeed, if 0 # 0, this condi-
tion is also necessary, as can be seen from Eq. (40).

As outlined in Section 4, the next step after ensuring that 6 = 0 is to arrange, if
possible, that ft < 0. By Eq. (33), Of is given by

=t - 21 ( 2Q;(r,;) + c*(r,r,,)). (43)

To proceed, it is necessary to evaluate z,, according to the formula (30) derived in Sec-
tion 4. Since u(z) contains no linear terms, the matrix R occurring in Eq (30) is the
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same before and after feedback, as is clear from Eq. (29). The fact that p = 0 also
simplifies the expression for X;. One has

-(R T R),R T  Q;(r,r)

= _(RTR)-RT Qd(r,r) +0-(r Q. r)"y

.J0.

From (44), it is clear that only the quadratic terms (i.e., Q,) in the feedback con-
trol influence the value of 4;. Using (38) and (39), one evaluates 6:

6; =21 {2Qo(r,z;) + 2(rTQ,-)-I + (rQ. r)LT

+ Co(r,r,r) + C,(r,r,r )}

= 2l1 yC.(r,r,r) + 0, (45)

where 0 is a quantity which is fixed once Q, is chosen, and, moreover, does not depend
on the trilinear form C, (z ,y ,z ).

From Eq. (45) it follows that if 1 7-9 0, the value of R may be assigned arbi-

trarily by appropriate choice of the scalar valued trilinear form C, (z ,y ,z). This holds
regardless of the choice made for the symmetric matrix Q.. The following theorem sum-
marizes these results.

Theorem 4. Let hypothesis (S) hold and assume !1 7 0, that is, the critical zero eigen-
value is controllable for the linearized version of Eq. (2) near the origin. Then there is a
smooth feedback control u = u (z ) with u (0) = 0, containing only quadratic and cubic
terms in z, which solves the local stationary bifurcation control problem for Eq. (1) and
the local smooth feedback stabilization problem for Eq. (2). Moreover, the quadratic
terms in u (z) can be used to ensure that 61 = 0 for the controlled system, and the cubic

terms can then be used to ensure that ,2 < 0.

Theorem 4 should be compared with Theorem 1, which contains the analogous
results for local Hopf bifurcation control. The assumption 1' 74 0 was sufficient for sts-
bilizability in that setting as well. However, a stabilizing feedback consisting of only
cubic terms was needed, while both quadratic and cubic terms are required in Theorem
4. This is due to the need for a two-stage control design in the stationary bifurcation
control case.

Now consider the case l'- = 0, i.e. let the critical (zero) eigenvalue be uncontroll-
able for the linearized system. In the setting of Section 3, under the analogous assump-
tion it was found that generically local feedback stabilization of the nonlinear system is
achievable. However, Eq. (40) reveals that in the present setting feedback has no effect
on the value of 61 in case l-y = 0. The discussion in Section 4 therefore implies that

the local feedback stabilization problem for Eq. (2) will then be unsolvable, unless



perhaps it happens that 61 = 0 in the absence of a control effort (a nongeneric assump-
tion). Similarly, the local stationary bifurcation control problem is also generically
unsolvable in case 1 = 0.

Theorem 5. Let hypothesis (S) hold and assume 1l = 0, that is, the critical zero eigen.
value is uncontrollable for the linearized version of (2). Then if 61 j 0 for Eq (1) with
-u (z ) = 0, both the local stationary bifurcation control problem for Eq. (1) and the local
feedback stabilization problem for Eq. (2) are not solvable by a smooth feedback control
with vanishing linear part.

Note that the negative conclusion of this theorem does not exclude the possibility
that "nearly stabilizing" feedback controls might be constructed for the case 1- - 0
In the next section we consider this point, and introduce precise notions of "proximity
stabilization" and "proximity stabilizability" as an alternative to local stabilization for
this case.

6. Proximity stabilization
Under the assumptions that a simple zero eigenvalue is linearly uncontrollable and

y4 0, Theorem 5 above asserts that smooth local feedback stabilization is unattain-
able within the class of purely nonlinear feedback controls. This fact may lead one to
search for other acceptable forms of local stability besides the standard notion of
asymptotic stability in the sense of Liapunov. In this context, recall that Brockett is

has obtained easily verifiable necessary conditions for stabilizability by any smooth feed-
back control. Consider the following definition.

Definition 1. The origin is said to be proximity stabilizable for Eq. (2) if for any t > 0
there is a smooth feedback u = u (z) rendering the ball centered at the origin of radius
f in R" a locally attracting set.

To illustrate the nature of proximity stabilization, we consider a simple scalar example.
Suppose z satisfies

x - ux.(46)

Then #1 7 0 and 1-1 = 0, so there does not exist a smooth feedback u (z) containing
no linear terms stabilizing the origin. Indeed, it is easily checked that no smooth feed-
back can render the origin asymptotically stable, even with linear terms in z . However,
this system is proximity stabilizable in the sense of Definition 1. This is easily seen by
noting that < c ) is attracting for (46) if u (z) = kz 2 with k >C-.

The following result states that under the assumptions of Theorem 5, generically
there is a smooth feedback control containing only cubic terms in the state r solving
the proximity stabilization problem. Our proof is not difficult but in the interest of
brevity it will be presented elsewhere.

Theorem 6. Under the hypotheses of Theorem 5, the proximity stabilization problem for
Eq. (2) ise solvable with a cubic feedback control under generic assumptions on the func-
tion f

7. Examples and directions for further research
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The first example considered below was studied previously by Su, Meyer and Hunt

[351 They derived a locally stabilizing feedback control law using feedback linearization
as an intermediate step. In principle, this technique allows one to construct an infinite
family of stabilizing controllers for the example. This example is one of a nonlinear criti-
cal system, and does not involve a bifurcation parameter. The second example is that
of a parametrized scalar equation, and is studied mainly to motivate consideration of an
issue of proximity stabilization (in a sense to be discussed below) of bifurcations.

Example 1. Following Su, Meyer and Hunt [35] , consider the control system(X ( sin 0X2J + v(47)

where v is the control. Note that the linearization of (47) possesses a double zero eigen-
value. Thus the theory of Section 5 cannot be applied directly. To circumvent this
problem, we define a new control u by

U = V + a X 2

where a is an arbitrary positive number. Then (47) becomes

(xI Sin 12 ) + (0 (48)

12J - a.T 2(0

A suitably parametrized version of (48) would, if u = 0, undergo a stationary bifurca-
tion from a simple zero eigenvalue. Thus the results of Section 5 are applicable to Eq.
(48). Note that no quadratic terms appear in the series expansion of the right side of
(48) for u = 0. Hence Qo(z,y) 0. By (27), this implies #I = 0, and hence also
#1 0 for the uncontrolled system. Theorem 4 then implies that, if 1- 1 0, only cubic
terms would be needed to stabilize the origin of Eq. (48). Indeed, it is easily seen that
r = (1 0)T , = (I -), and since -= (0 1 )T ,

I- = 76 . (49)

The coefficient 02 for the uncontrolled system can be found using Eq. (33). We have

02 21 Co(r ,r,r )

=2 (1 a-) (0)

0. (50)

Hence stability cannot be determined based only on knowledge of 01 and 62. However,
using Eq. (45) and the preceding comments, we find that the value of 02 after control is
applied is

2; a -' C. (,.,.r (s1)
and we are free to choose the cubic terms C, in the feedback control. (Recall that the

quadratic terms Q. have been set to 0.) It is easy to check that the choice

U = ,(,z,,)= .5 a 6 (52)



6 > 0, renders Of < 0. Hence, for the original system (47), we have the stabilizing conI
trol laws

V= -01z2 - 6Xz (53)

for any a, 6 > 0. The essential distinction between this control law and that obtained
in [35] is that linear feedback in only one variable appears in our control law, while
linear feedback in both variables forms part of the control obtained in [35] . Computa-
tions involving the nonlinear terms are essential in deriving the control law (53) above.

Example . (Motivational). Consider the parametrized scalar equation

Z =--r _ QZS + 2azx (54)

where p is the bifurcation parameter and cr is a design parameter. We wish to view (54)
as arising from a specific choice of the form of a feedback controller in a parametrized
scalar control system. The term 2a 2: has been retained since we are now mainly
interested in more global considerations. It is easy to check that any choice of a > 0
will stabilize the (stationary) bifurcation occurring at g = 0, x = 0.

Suppose, however, that we are also interested in ensuring the persistence of some
sort of local asymptotic stability for a wide range of values of the parameter p > 0.
Since the origin is unstable for p > 0, we will be satisfied with rendering a neighbor-
hood of the origin attracting. If no further restrictions are placed on the problem, the
solution is quite simple: given an interval 0 < p < po of parameter values for which
attractivity of a neighborhood of the origin is desired, there is an a sufficiently large
achieving this goal. This follows by a simple Liapunov function argument, viewing (54)
as a perturbed version of the stable equation

= (55)

The difficulty, of course, is that the size of the neighborhood which is attracting may
shrink drastically for large p. In a practical sense, therefore, this approach may prove
unacceptable.

Consider the following alternative formulation: Given a "stability region tolerance"
to > 0, find a > 0 to maximize the value p, such that the set Ix I < to is locally
attracting for 0 < p < pl. The following analysis addresses this issue. Before proceed-
ing, it should be noted that the important goal of maximizing the size of the region of
attraction of the to neighborhood is also an important goal, but is not incorporated into
this problem formulation.

Define the Liapunov function candidate

V(Z ) = 2/2. (56)

The derivative of V along trajectories of (54) is

- 0Z2 + 2a2:3). (57)

Now < 0 at x= ±= if and only if

Y./ *.~ A ' ~ _



2 + 2o2 O< 0, (8

i.e., if and only if

PA<MMax@) ck4 I - 2 ) (59)

Now

max0 > 0 P,,(c) = 11..(Ck*), (60)

where

" 0.25 to (61)

is the best value of a that could be obtained with the Liapunov function V. Inciden-
tally, pj will then be given by

- 4'/8. (62)

This simple example is given as motivation for studying more general versions of
this proximity stabilization issue for bifurcations. The basic issues noted for Example 2
recur in the analysis of the general case. The stability of critical systems depending on
parameters has received much attention in the past. Parameter values for which the ori-
gin is stable for the critical system are termed safe while those for which the origin is
unstable are known as dangerous [15, 5] .This terminology arose from the consideration
of the stability properties of maneuvering military aircraft. This application is still an
active area of investigation 129, 30, 201 . The author is continuing these efforts by inves-
tigating application of the results discussed here to the aircraft high angle of attack
flight control problem.
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buted Systems," Prnc. 1985 IFAC Workshop on Control Applications of Nonlinear Program-
ming and Optimization. Pergammon Press, 1986.

(8) ' Two Competing Queues with Linear Costs and Exponential Service Requirements: The
pc-rule is Often Optimal," with A.J.Dorsey and A. Makowski, Advances in Applied Proba-
blilty, Vol. 16, No. 1, (1984) pg.8.

(9) - K Competing Queues with Geometric Service Requirements and Linear Costs: Th pc-rule
is Always Optimal," with D.J. Ma and A. Makowski. Systems and Control Letters, Vol. 6,
No. 3, (1985). pg. 173. 1
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CARLOS A. BERENSTEIN 1

Professor of Mathematics
V

Carlos A. Berenstein was born in Buenos Aires, Argentina on August 7, 1044. Hie received a
degree in mathematics (Licenciado) at the Universidad Naclonal de Buenos Aires in 1966, an M.S.
(1969) and the Ph.D. (1970) from the Courant Institute of Mathematical Sciences (New York
University). In 1970-73 he was Benjamin Pierce Assistant Professor of Mathematics at Harvard
University, since that time he has been at the University of Maryland where he became Associate
Professor in 1976 and Full Professor in 1980. He has been a Visiting Professor at several institu-
tions: Brandeis University, University of Paris, University of Bordeaux, Scuola Normale Superiore
(Pisa), etc.

Dr. Berenstein is a member of the American Mathematical Society. lie is currently the
organizer of a Special Year in Complex Analysis at the University of Maryland, funded by the
National Research Foundation and the Argonne University Association.

RESEARCH INTERESTS

Dr. Berenstein's interests lie in Complex Analysis, Harmonic Analysis and their applications
to Engineering. These applications are based on recent developments in the theory of functions of
several complex variables. They lie in image processing, signal processing, frequency domain
methods for the control of distributed parameter systems, etc. Some of his students are currently
working on the Implementation of algorithms based on his work using MACSYMA, DELIGHT
and MARYLIN.

SELECTED RECENT PAPERS

(1) " An inverse Neumann problem," with P. Yang, to appear (1986). 33p.

(2) " A local version of the two-circles theorem," with R. Gay, to appear in the Israel J. Math,
37p. - 1-Inverses for polynomla matrices of non-constant rank," with D. Struppa, Systems
and Control Letters, Vol. 6 (1986), pp.309-314.

(3) " Solutions of convolution equations in convex sets," with D. Struppa, to appear in Amer. J.
Math.. 37p.

(4) " Spectral synthesis on symmetric spaces," to appear in Contemporary Mathematics.

(5) " Sur Is synthese spectrale dans les espaces symmetriques," with R. Gay, to appear in J.
Anal. Math.

(6) " Deconvolution methods for multi-sensors," with P.S. Krishnaprasad and B.A. Taylor,

(1984) 87p.

(7) " Idea generated by exponential-polynomials," with A. Yger, to appear in Advances In
Mathematics, 132 p.

(8) " On the equilibria of rigid spacecraft with rotors," with P.S. Krishnaprasad. Systems and
Control Letters, Vol. 4 (1984), pp.157-163.

(9) " Le probleme de le deconvolution," with A. Yger, J. Funct. Anal., Vol. 54 (1983). pp.113-
160.

_i i

7:S



JOHN HENRY MADDOCKS

Assistant Professor of Mathematics

John Maddocks was born in the United Kingdom in 1958. He received his B.S. in
Mathematics with honors in 1978 from the University of Glasgow. In 1982 he received his Ph.D.
from Balliol College, University of Oxford.

Before becoming an Assistant Professor of Mathematics at the University of Maryland in
1984, Dr. Maddocks was an Assistant Professor at Stanford University (1981-82), a Junior
Research Fellow at the Queen's College, University of Oxford (1983-84) and a Senior Fellow at
the Institute for Mathematics and its Application, University of Minnesota (1984-85). He is a
member of AMS, SIAM and Society for Natural Philosophy. Additionally, Dr. Simo participates
as a reviewer for N.S.F., International J. of Solids and Structures and J. of Applied Math. and
Optimization.

RESEARCH INTERESTS

Dr. Simo's research interests are in the area of Elastostatistics and Nonlinear Bifurcation Theory.

SELECTED RECENT PAPERS

(1) "Stability of nonlinearly elastic rods," Arch. Rat, Mech. Anal., 85, 1984, pp. 311-354.

(2) "Dynamical theory of the elastica," with R.E. Cafiisch, Proc. Roy. Soc. Edin. A., Vol. 99,
pp. 1-23, 1984.

(3) "Restricted quadratic forms and their application to bifurcation and stability in constrained
variational principles," SLAM J. Math. Anal., Vol. 16 1985, pp. 47-68.

(4) "A model for twinning,*" with G.P. Parry, J. Elasticity, in press. IMA Preprint Series No.
125, 1985.

(5) "Stability and folds," IMA Preprint Series No. 174, 1985. Submitted to Arch. Rat. Mech.
Anal.

(6) "Mechanics of ropes," with J.B. Keller, IMA Preprint Series No. 183, 1985. Submitted to
SIAM J. Appl. Math.

(7) "Stability of the elastica," Proc. of Nato/London Math. Soc. Advanced Study Institute.
Ed. J.M. Ball, Reidel, 1983.

V.
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JERROLD E. MARSDEN -"

Professor of' Mathematics
University of California, Berkeley

Jerrold Marsden was born in British Columbia. Canada August 17, 1042. He received his
B.S. from the University of Toronto in 1965 and his Ph.D from Princeton University in 1967.

Dr. Marsden has served as an Instructor at Princeton University (1967-68); Lecturer in
Mathematics at Berkeley (1968-69); Assistant Professor, University of Toronto (1970-71); Assis-
tant Professor, University of California, Berkeley (1971-72); and Associate Professor, University of
California, Berkeley (1972-76). Since 1976 he has been a Professor of Mathematics at Berkeley.
Additionally, Dr. Marsden has held many visiting research, professor, fellow and scholar titles
nationally and Internationally. Dr. Marsden has presented numerous invited talks and conference
lectures and received a number of awards for essays and research. He serves the scientific com-
munity as an editor or reviewer for many scholarly publications. Dr. Marsden has written 14
books and over 100 articles on various topics in mathematics.

RESEARCH INTERESTS

Dr. Marsden's research interests are in the areas of Nonlinear Dynamics, Hamiltonian Systems,
Chaotic Dynamics, Dynamical Systems and Stability among others.

SELECTED RECENT PAPERS

(i) "Constraints and mementum maps for relativistic classical fields," with Gotay, Isenberg.
Montgomery, Sniatycki and Yasskin, in preparation.

(2) "Bifurcation to quasi-peridic Tori in the interaction of steady state and Hopf birurcations,"
with J. Scheurle, accepted, SIAM, J. Math. Ann.

(3) "On the rotated stress tensor and the material version of the Doyle-Ericksen formula," with
J.C. Simo. accepted, Arch. Rat. Mech. Ann.

(4) "The York Map is a canonical transformation," with J. Isenberg, accepted, J. of Geometry
and Physics.

(5) "Temporal and spatial chaos in a van der Waals fluid due to periodic thermal fluctuations,"
with M. Slemrod, accepted, Adv. in Appl. Math.

(6) "Averaging, horseshoes, and exponentially small Melnikov functions," with P. Holmes and
J. Scheurle, in preparation.

(7) "Quasiconvexity, second variations and the energy criterion in nonlinear elasticity," with J.
Ball, accepted, Arch. Rat. Mech. Ann.

(8) "Nonlinear stability of fluid and plasma systems," with D. Holm, T. Ratiu and A. Vein-
stein, accepted, Physics Reports.

(9) "The Hamiltonian structure of general relativistic perfect fluids," with Baa and Walton.
preprint.

(10) "Generalized Poisson brackets and nonlinear Llapunov stability application to reduced
Ml1D" with Hazeltine, Holm and Morrison, accepted, Proc. Plasma Phys. Conference,
Lausanne, June 1984.

(11) "Chaos In dynamical systems by the Poincare-Melnikov-Arnold method" Proc. ARO
Workshop, March 1984.
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JUAN C. SIMO

Assistant Professor, Mechanical Engineering
.Stanford University, California

Juan Simo was born in Spain. He received his degree or E.T.S: Ing. Caminos Canales y
Puertos in 1976 from the Universidad Politecnica, Madrid. Spain. In 197c, Dr. Simo received his
M.S. degree in Metodos Cuantitativos from Escuela de Organizacion Industrial, Madrid, Spain.
The M.S. and Ph.D. were received from the University of California at Berkely in Civil Engineer-
ing In 1980 and 1982 respectively.

Dr. Simo has held positions as Research Assistant, Lecturer, Post-Doctoral Fellow and Assis-
tant Research Engineer at the University of Calfironia at Berkeley (1980-1085). Most recently he
has been at Standford University as an Instructor (1984), Lecturer (1985) and as an Assistant Pro-
fessor (1985-present). He has been invited to present his work at a number of conferences, sympo-
sium and lectures in the United States as well as internationally.

RESEARCH INTERESTS

Dr. Simo's research interests are in the areas of Nonlinear Theory and Elastostatics.

SELECTED RECENT PAPERS

(1) "Remarks on the Patch Test and Stummel's Counterexample," with with R.L. Taylor,
International Journal of Numerical Methods in Engineering, to be submitted.

(2) "On a fully Three-dimensional finite strain viscoelastic damage model: Formulation and
computational aspects," Comp. Meth. Appl. Mech. Engng., submitted for publication.

(3) "On the Dynamics of Flexible Beams Subject to Large Overall Motions- The Plane Case,"
with L. Vu-Quoc, Electronics Research Laboratory Memorandum No. UCB/ERL M85/63,
University of California, Berkeley, submitted for publication in J. Applied Mechanics.

(4) "A consistent return mapping algorithm for plane strain elastoplasticity," with R.L. Taylor,
Int. J. Num. Methd. Engng., (in press).

(5) "A 3-Dimensional Finite Strain Rod Model: Geometric and Computational Aspects," with
L.V. Quoc, Comp. Mth. Appl. Mech. Engng., in press.

(6) "On the Variational Structure of Assumed Strain Methods," with T.J.R. Hughes, J. Appl.
Mechanics, in press.

(7) "An Analysis of a New Class of Integration Algorithms for Elastoplastic Constitutive Rela-
tions," with M. Ortiz, Int. J. Num. Meth. Engn., in press.

(8) "A 3-Dimensional Finite Deformation Viscoelastic Model Accounting for Damage Effects."
with R.L. Taylor, Report No. UCB/SESM-85/02, Department of Civil Engineering. Univer-
sity of California. Berkeley. 1985.

(9) "Bending and Membrane Elements for the Analysis of Thick and Thin Shells,

(10) "Augmented Lagrangian Formulations for the Finite Element Solution of Contact Prob-
lems." with P. Wriggers and R.L. Taylor. NUMETA Conference, Swansea, Wales, January
1985.

(II) "'Rate Constitutive Equations: Are they Necessary?", with M. Ortiz, K.S. Plster and R.L.
Taylor. ASME Winter Annual Meeting. New Orleans 1984.
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